Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama.

نویسندگان

  • Marife D Corre
  • Edzo Veldkamp
  • Julia Arnold
  • S Joseph Wright
چکیده

Nitrogen deposition is projected to increase rapidly in tropical ecosystems, but changes in soil-N-cycling processes in tropical ecosystems under elevated N input are less well understood. We used N-addition experiments to achieve N-enriched conditions in mixed-species, lowland and montane forests in Panama. Our objectives were to (1) assess changes in soil mineral N production (gross rates of N mineralization and nitrification) and retention (microbial immobilization and rapid reactions to organic N) during 1- and 9-yr N additions in the lowland forest and during 1-yr N addition in the montane forest and (2) relate these changes to N leaching and N-oxide emissions. In the old-growth lowland forest located on an Inceptisol, with high base saturation and net primary production not limited by N, there was no immediate effect of first-year N addition on gross rates of mineral-N production and N-oxide emissions. Changes in soil-N processes were only apparent in chronic (9 yr) N-addition plots: gross N mineralization and nitrification rates, NO3- leaching, and N-oxide emissions increased, while microbial biomass and NH4+ immobilization rates decreased compared to the control. Increased mineral-N production under chronic N addition was paralleled by increased substrate quality (e.g., reduced C:N ratios of litterfall), while the decrease in microbial biomass was possibly due to an increase in soil acidity. An increase in N losses was reflected in the increase in 15N signatures of litterfall under chronic N addition. In contrast, the old-growth montane forest located on an Andisol, with low base saturation and aboveground net primary production limited by N, reacted to first-year N addition with increases in gross rates of mineral-N production, microbial biomass, NO3- leaching, and N-oxide emissions compared to the control. The increased N-oxide emissions were attributed to increased nitrification activity in the organic layer, and the high NO3- availability combined with the high rainfall on this sandy loam soil facilitated the instantaneous increase in NO3-leaching. These results suggest that soil type, presence of an organic layer, changes in soil-N cycling, and hydrological properties are more important indicators than vegetation as an N sink on how tropical forests respond to elevated N input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immediate and long-term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input

Tropical nitrogen (N) deposition is projected to increase substantially within the coming decades. Increases in soil emissions of the climate-relevant trace gases NO and N2O are expected, but few studies address this possibility. We used N addition experiments to achieve N-enriched conditions in contrasting montane and lowland forests and assessed changes in the timing and magnitude of soil N-o...

متن کامل

Ecosystem Consequences of Tree Monodominance for Nitrogen Cycling in Lowland Tropical Forest

Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of ...

متن کامل

Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis

Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest's nutrient status; however, few studies of N addition appear to incorporate the nutrie...

متن کامل

Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2.

A common finding in multiple CO(2) enrichment experiments in forests is the lack of soil carbon (C) accumulation owing to microbial priming of 'old' soil organic matter (SOM). However, soil C losses may also result from the accelerated turnover of 'young' microbial tissues that are rich in nitrogen (N) relative to bulk SOM. We measured root-induced changes in soil C dynamics in a pine forest ex...

متن کامل

Seasonal drought and dry-season irrigation influence leaf-litter nutrients and soil enzymes in a moist, lowland forest in Panama

Climatic conditions should not hinder nutrient release from decomposing leaf-litter (mineralization) in the humid tropics, even though many tropical forests experience drought lasting from several weeks to months. We used a dry-season irrigation experiment to examine the effect of seasonal drought on nutrient concentrations in leaffall and in decomposing leaf-litter. In the experiment, soil in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 2010